《小数乘小数》的教学设计

时间:2023-12-16 23:40:55
《小数乘小数》的教学设计

《小数乘小数》的教学设计

作为一名专为他人授业解惑的人民教师,可能需要进行教学设计编写工作,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。那么写教学设计需要注意哪些问题呢?下面是小编收集整理的《小数乘小数》的教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。

《小数乘小数》的教学设计1

[教学内容]

教材第82~83页例1、“试一试”以及相应的练习。

[教学目标]

1、使学生通过自主探索,理解并掌握小数乘小数的计算方法,能正确计算相应的式题。

2、引导学生积极主动地参加教学活动,经历探索计算方法的过程,培养他们初步的推理能力以及抽象概括能力,并能用数学语言表达自己的想法并进行交流。

3、使学生进一步体会数学知识之间的内在联系,感受数学探究活动本身的乐趣,增强学好数学的信心。

[教学重点]

确定积的小数点的位置。

[教学难点]

理解把小数乘法转化成整数乘法后,得到的积回归小数乘法积的推理过程。

[教材简析]

本课学习小数乘小数的计算方法,其教学的生长点是整数乘法。然而,“按整数乘法相乘后怎样得到原来的积”,则需要经历一个严密的推理过程,教材安排两次探究活动:第一次在例1,思考虚线框里三个箭头以及上面的“×10”“÷100”的意思,扶着学生经历推理过程;第二次在“试一试”,让学生在三个箭头上面的括号里填数,并写出左边竖式的积,独立进行推理。在两次探究以后,比较各题中两个因数与积的小数位数,发现“两个因数一共有几位小数,积就有几位小数”这一规律,在理解算理的基础上得出在积里点小数点的操作方法。同时通过归纳推理的方式总结出小数乘法的计算法则。

[教学过程]

一、在“情境”中引发问题

1、复习旧知:小明搬了新家,这是他家的建筑平面图。你能计算每个房间的占地面积吗?说说你是怎样算的?

书房的面积:3×3=9平方米

厨房的面积:2.7×2=5.4平方米,先按照整数乘法进行计算,因为2.7中有一位小数,所以积中也有一位小数。

客厅的面积:3.21×5=16.05平方米先按照整数乘法进行计算,因为3.21中有两位小数,所以积中也有两位小数。

2、提出问题:有没有同学能计算卧室的面积?

列出算式:3.6×2.8(学生苦于无法计算,面露难色)

指导观察:“3.6×2.8”和刚才的乘法算式有什么不同?

揭示课题:这节课我们一起来探讨“小数乘小数”的计算方法。

(设计意图:从计算“房间的面积”这个生活原型引入,突出数学与实际生活的联系,唤起学生的学习兴趣。学生在计算房间面积过程中,既复习了已有知识,激活了新知的生长点,又引出了“小数乘小数”的新的数学问题,给计算教学增添了浓郁的现实意义。)

二、在推理中实现转化

(一)尝试计算,引导推理

1、估一估,确定积的范围

先估计一下,“3.6×2.8”的积大约是多少?

估算方法一:4×3=12平方米,把3.6和2.8分别看成最为接近的整数,把两个数都看大了,准确得数比估计的数小,所以积小于12平方米。

方法二:3×3=9平方米,把3.6和2.8分别看成比较接近的整数,把3.6看小,2.8看大,所以积在9平方米左右。

确定范围:通过刚才的估计,我们知道“3.6×2.8”的积应该小于12平方米或是9平方米左右,那么准确得数究竟是多少呢?我们可以用竖式来计算。

(设计意图:在竖式计算之前先估一估,一方面使学生体会到解决问题策略的多样性与灵活性,在不要求精确结果的情况下可以使用估算方法很快解决实际问题。同时不同估算方法得到的结果也能为探索笔算方法提供正确结果的大致范围。)

2、点拨转化方向

根据我们以往计算小数乘整数的经验,猜测一下:用竖式计算小数乘小数可以怎样计算?(把两个小数都看成整数,先按整数乘法进行计算,点上小数点。)

3、尝试计算,突现矛盾

学生独立尝试计算,小组相互交流。而后,选择不同的方法板书在黑板上。可能有以下两种方法:

3.63.6

×2.8×2.8

288288

7272

100.810.08

(a)(b)

方法a:把3.6×2.8看成36×28来计算,结果是1008。因为两个因数都是一位小数,所以积也是一位小数,结果是100.8。

方法b:我也是把3.6×2.8看成36×28来计算,结果是1008。因为两个因数都是一位小数,所以积中肯定也有两位小数,积是10.08。

突现矛盾:两种算法似乎都有各自的道理。那么,根据你的理解,哪种算法可能是正确的?(学生可以从刚才估计的结果来判断)大家一致认为10.08是合理的答案,看来关键问题是积的小数位数。计算3.6×2.8的积为什么要点出两位小数?我们继续研究。

4、激活旧知,引导推理

尝试解释:计算3.6×2.8的积为什么要点出两位小数?你能想办法说明吗?

可能出现两种解释方法。方法一:把3.6米和2.8米分别改写成分米作单位,算出面积是1008平方分米,再还原成平方米作单位.所以积是两位小数。方法二:运用“积的变化规律”和“小数点移动规律”,计算时把3.6和2.8分别看作36和28,把两个因数都乘了10,算出的积1008就等于原来的积乘100。为了让积不变,就要把1008除以100。

引导推理:随着学生的回答,出示分析推理图,你能看懂虚线框里的意思吗?谁愿意说说自己的理解?

3.6

×2.8

288

72

1008

看着分析图,引导学生完整叙述整个推理过程。

第一个箭头“×10”是把3.6看成36是乘10;第二个箭头“×10”是把2.8看成28是乘10;把两个因数都乘10,得到的积就等于原来的积乘100;最后一个箭头“÷100”表示要得到原来的积就要把得到的整数积除以100。

现在你们知道算法a错在哪里了吗?(两个因数都乘10,积也就乘了100,算法a只把得到的积除以了10。)

小结:两个因数都乘10后,得到的数就等于原来的积乘100,要求原来的积,就要反过来把1008除以100,从右边起数出两位点上小数点。所以3.6×2.8的积是两位小数。

通过推理,我们证明了3.6×2.8=10.08,和估计的结果是一致的,积确实小于12平方米或是9平 ……此处隐藏17824个字……00.8或1.008呢?

思考并交流:导学案合作交流问题3。

全班交流问题3(呈现幻灯片:把3.6×2.8都看成整数,这两个因数发生了什么变化?36×28的结果和3.6×2.8的结果之间到底有什么关系?为什么?)

(重点交流:积发生了什么变化?要由36×28的结果得到3.6×2.8的结果,应该怎么办?一个数除以100,只要 )

指向:积由原来的整数变成了两位小数。所以是10.08。

(教师小结:两个因数都乘10后,得到的数就等于原来的积乘100,要求原来的积,就要反过来把1008除以100,从右边起数出两位点上小数点。所以3.6×2.8的积是两位小数。)

通过推理,我们再次证实了3.6×2.8=10.08,(一起答)

4、补充答语。

(二)、教学“试一试”,强化算理的理解。

1、提出问题:小明还有一个明亮的阳台,它的面积又是多少平方米呢??谁说说列式?

(2.8×1.15),

2、师:考虑一下,你会怎样写这个竖式?为什么?

(1.15写在上面,2.8写在下面)

生:因为我们是把1.15和2.8都看成整数来计算的,所以三位数写在上面,两位数写在下面更简便。

3、师:对了,我们要学会选择合理的算法。知道怎么做吗?好,打开课本,把你的思考过程在书上填一填。

a. 交流:谁来说说是怎样得到1.15乘2.8的积的?

b. 追问:115乘28得到3220后怎么得到1.15乘2.8的积呢?(除以1000)为什么?(学生把理说得很清晰就不追问)

引导学生表达:把两个因数都看成整数,等于把一个因数乘100,另一个因数乘10,所以得到的积就等于原来的积乘1000,要得到原来的积,就要用3220除以1000。

c. 到此结束了吗?还需( )。根据是什么?

d. 在这里是先点上小数点还是先简化?为什么?

4、你能跟你的同桌说说下面两题该怎么计算吗?(同桌交流:不计算,只说想法)(汇报想法。)

4.27×2.6 = 6.3×4.2=

(三)寻找规律,概括算法

1、师:我们刚才都是把小数看成整数来计算,然后再根据积的变化规律把整数的积还原成小数的积。如果每题都这样去想是不是很麻烦?这当中有没有什么规律可寻呢?

2、提出问题a、观察上述各题的两个因数分别是几位小数,积是几位小数?

b 、通过比较,你发现积的小数位数与因数的小数位数有什么关系?

(幻灯片呈现:两个因数一共有几位小数,积就有几位小数。)

师:小数乘整数符合这个规律吗?

3、师:发现了这个规律,你是否感觉到小数乘小数变得太简单了?

4、小数乘小数应该如何计算呢?(把你的想法在小组内交流)

(生说)(幻灯片呈现)

交流:先干什么?(按整数乘法算出积)再干什么?(给积点上小数点)如何确定小数点的位置?(看因数中一共有几位小数,就从积的右边起数出几位,点上小数点)积的末尾有0怎么办?(先点小数点,在把0去掉)

(简单点说就是:一算 二数 三点点 四化简)

三.巩固提升:

1、你能给下面两题的积点上小数点吗?

①指名口答

②小数点为什么点在这里?

2、下面我们再来看看这两位同学点的小数点。先看对不对?然后改正,并思考其错误的原因可能是什么?

3、师:同学们的思考非常积极,计算题我们不光要知道怎么做,还要把它做对。

(在导学案上完成用竖式计算) (看谁做得又快又对)(讲评:突出横式写答案)

4、师:今天同学们的表现都非常棒。小数乘小数在生活中也有着广泛的应用。

(呈现幻灯片)一种西服面料,每米的售价58.5元,买这样的面料5.2米,应付多少元?(先估计得数,再计算)

①看题目。

②谁来说说你怎么估的。

③结果是不是300元左右呢?在导学案上列式解答。

④指名一人口答。58.5×5.2=304.2(元)(呈现)

四、思维拓展:

过渡:接下来,老师还想看看谁的反应快。快速抢答,直接说出下面各题的积。(准备)(第一题)

1、根据148×23=3404,直接说出下面各题的积。

14.8×2.3= 1.48×2.3= 14.8×0.23=

过渡:同学们今天注意力比较集中,所以思维都很敏捷。做事就应该这样。老师这里还有一题。

2、根据156×27=4212,你能在括号内填上适当的数,使等式成立吗?

( )×( )=4.212

(看谁想到的答案多)

五、回顾反思:这节你有什么收获?还有哪些疑问?

六、当堂检测:

1、在算式6.29×3.2中,如果两个因数同时扩大10倍,积就扩大( )倍;如果一个因数扩大10倍,另一个因数缩小10倍,积( )。

2、在计算2.17×1.2时,可以先看作( )×( ),它的积是( )。因为两个因数共有( )位小数,所以2.17×1.2的积也是( )位小数,也就是( )。

3、计算。 9.8×0.3= 41.4×2.5= 0.03×67.5=

小数乘小数,它是在学生学习了小数乘整数的基础上进行教学的。在整个过程中,我放手让学生充分运用已有知识自己去探索,凭学生自己的理解来寻找解决新问题的方法。(1)独立尝试。学生在独立计算2.8×3.6时,势必会根据对前面小数乘以整数的算法和算理的理解来进行计算,这一尝试可充分暴露学生的思维过程,我充分了解学生计算小数乘以小数时在认知上的难点,为接下来有针对性、有重点的教学找准了最佳的切入口。(2)交流各自的算法与想法。在交流中,我让不同层次的学生畅谈自己的算法与想法。如在计算小数乘小数的过程中,我首先让学生估算2.8×3.6的结果最大是多少,最小是多少,然后让学生再进行计算,来判断自己的计算是否正确。我充分尊重学生,让尽可能多的学生创造性地参与到计算的探索过程中来,对学生的各种不同的算法与想法展示给全班学生,让学生进一步感悟算理,获得方法。最后通过比较小数乘法,学生明白了:先按整数乘法的计算方法得出积,再看两个因数中一共有几位小数,就从积的右边起数出几位,点上小数点。通过试一试让学生明白先点小数点再化简。我本人认为很简单,但学生在做题中出现的错误较多: 1)由于马虎出现计算性错误。 2)两个因数中,第二个是中间有零的,学生计算时特别容易把数位对错。 3)在计算结果中把积的小数位数数错,导致小数点的位置点错。我让同学自己找找原因,先想想小数乘法的计算方法,然后再跟错题比较一下,这时候有的同学能自己找出错题的原因,这样才能给学生留下深刻的印象,以至下次做题时不会再犯相同的错误。我想在课上这样强调,会大大减少学生的出错。

《《小数乘小数》的教学设计.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式